Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4669, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409133

RESUMO

Substantial evidence suggests that the circadian decline of core body temperature (CBT) triggers the initiation of human sleep, with CBT continuing to decrease during sleep. Although the connection between habitual sleep and CBT patterns is established, the impact of external body cooling on sleep remains poorly understood. The main aim of the present study is to show whether a decline in body temperatures during sleep can be related to an increase in slow wave sleep (N3). This three-center study on 72 individuals of varying age, sex, and BMI used an identical type of a high-heat capacity mattress as a reproducible, non-disturbing way of body cooling, accompanied by measurements of CBT and proximal back skin temperatures, heart rate and sleep (polysomnography). The main findings were an increase in nocturnal sleep stage N3 (7.5 ± 21.6 min/7.5 h, mean ± SD; p = 0.0038) and a decrease in heart rate (- 2.36 ± 1.08 bpm, mean ± SD; p < 0.0001); sleep stage REM did not change (p = 0.3564). Subjects with a greater degree of body cooling exhibited a significant increase in nocturnal N3 and a decrease in REM sleep, mainly in the second part of the night. In addition, these subjects showed a phase advance in the NREM-REM sleep cycle distribution of N3 and REM. Both effects were significantly associated with increased conductive inner heat transfer, indicated by an increased CBT- proximal back skin temperature -gradient, rather than with changes in CBT itself. Our findings reveal a previously far disregarded mechanism in sleep research that has potential therapeutic implications: Conductive body cooling during sleep is a reliable method for promoting N3 and reducing heart rate.


Assuntos
Sono de Ondas Lentas , Humanos , Frequência Cardíaca/fisiologia , Sono/fisiologia , Regulação da Temperatura Corporal , Temperatura Corporal/fisiologia , Fases do Sono/fisiologia
2.
Sleep Breath ; 26(1): 269-277, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33993394

RESUMO

PURPOSE: Diagnosis and treatment of obstructive sleep apnea are traditionally performed in sleep laboratories with polysomnography (PSG) and are associated with significant waiting times for patients and high cost. We investigated if initiation of auto-titrating CPAP (APAP) treatment at home in patients with obstructive sleep apnea (OSA) and subsequent telemonitoring by a homecare provider would be non-inferior to in-lab management with diagnostic PSG, subsequent in-lab APAP initiation, and standard follow-up regarding compliance and disease-specific quality of life. METHODS: This randomized, open-label, single-center study was conducted in Germany. Screening occurred between December 2013 and November 2015. Eligible patients with moderate-to-severe OSA documented by polygraphy (PG) were randomized to home management or standard care. All patients were managed by certified sleep physicians. The home management group received APAP therapy at home, followed by telemonitoring. The control group received a diagnostic PSG, followed by therapy initiation in the sleep laboratory. The primary endpoint was therapy compliance, measured as average APAP usage after 6 months. RESULTS: The intention-to-treat population (ITT) included 224 patients (110 home therapy, 114 controls); the per-protocol population (PP) included 182 patients with 6-month device usage data (89 home therapy, 93 controls). In the PP analysis, mean APAP usage at 6 months was not different in the home therapy and control groups (4.38 ± 2.04 vs. 4.32 ± 2.28, p = 0.845). The pre-specified non-inferiority margin (NIM) of 0.3 h/day was not achieved (p = 0.130); statistical significance was achieved in a post hoc analysis when NIM was set at 0.5 h/day (p < 0.05). Time to APAP initiation was significantly shorter in the home therapy group (7.6 ± 7.2 vs. 46.1 ± 23.8 days; p < 0.0001). CONCLUSION: Use of a home-based telemonitoring strategy for initiation of APAP in selected patients with OSA managed by sleep physicians is feasible, appears to be non-inferior to standard sleep laboratory procedures, and facilitates faster access to therapy.


Assuntos
Apneia Obstrutiva do Sono/terapia , Telemetria , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Serviços de Assistência Domiciliar , Humanos , Laboratórios , Masculino , Pessoa de Meia-Idade , Sono , Resultado do Tratamento , Adulto Jovem
3.
Nat Sci Sleep ; 13: 2039-2049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34785967

RESUMO

PURPOSE: An early prescreening in suspected obstructive sleep apnea (OSA) patients is desirable to expedite diagnosis and treatment. However, the accuracy and applicability of current prescreening tools is insufficient. We developed and tested an unbiased scoring system based solely on objective variables, which focuses on the diagnosis of severe OSA and exclusion of OSA. PATIENTS AND METHODS: The OSA prediction score was developed (n = 150) and validated (n = 50) within German sleep center patients that were recruited as part of the Sleep Apnea Global Interdisciplinary Consortium (SAGIC). Six objective variables that were easy to assess and highly correlated with the apnea-hypopnea index were chosen for the score, including some known OSA risk factors: body-mass index, neck circumference, waist circumference, tongue position, male gender, and age (for women only). To test the predictive ability of the score and identify score thresholds, the receiver-operating characteristics (ROC) and curve were calculated. RESULTS: A score ≥8 for predicting severe OSA resulted in an area under the ROC curve (ROC-AUC) of 90% (95% confidence interval: 84%, 95%), test accuracy of 82% (75%, 88%), sensitivity of 82% (65%, 93%), specificity of 82% (74%, 88%), and positive likelihood ratio of 4.55 (3.00, 6.90). A score ≤5 for predicting the absence of OSA resulted in a ROC-AUC of 89% (83%, 94%), test accuracy of 80% (73%, 86%), sensitivity of 72% (55%, 85%), specificity of 83% (75%, 89%), and positive likelihood ratio of 4.20 (2.66, 6.61). Performance characteristics were comparable in the small validation sample. CONCLUSION: We introduced a novel prescreening tool combining easily obtainable objective measures with predictive power and high general applicability. The proposed tool successfully predicted severe OSA (important due to its high risk of cardiovascular disease) and the exclusion of OSA (rarely a feature of previous screening instruments, but important for better differential diagnosis and treatment).

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2780-2783, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018583

RESUMO

Sleep apnea has a very high prevalence in the general population. Sleep apnea can be the cause for cardiovascular disorders. An increased risk for suffering from hypertension, stroke, and myocardial infarction had been shown in large studies, like the Sleep Heart Health Study. Sleep related breathing disorders and sleep apnea had been diagnosed in sleep laboratories with polysomnography in the past. Today in view of the high prevalence of sleep disordered breathing, home sleep apnea testing (HSAT) has become the accepted test for the diagnosis of sleep apnea, if there are no other comorbidities, and if a high pretest probability was confirmed by a sleep physician. For home sleep apnea testing, the number of sensors needed should be reduced. Some methods use indirect means to derive features to detect sleep apnea and hypopnea events. A very well developed method is peripheral arterial tonometry (PAT). This method records the pulse wave on a finger and derives sleep and sleep apnea feature. The PAT method has been tested under many conditions. As an indirect method, it was long seen as a limitation that obstructive and central sleep apnea events could not be distinguished. A new multicenter trial was set up to develop algorithms, which could distinguish central and obstructive apnea events with sufficient accuracy.


Assuntos
Síndromes da Apneia do Sono , Apneia do Sono Tipo Central , Apneia Obstrutiva do Sono , Humanos , Manometria , Polissonografia , Síndromes da Apneia do Sono/diagnóstico , Apneia do Sono Tipo Central/diagnóstico , Apneia Obstrutiva do Sono/diagnóstico
5.
Sleep ; 43(5)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-31679018

RESUMO

STUDY OBJECTIVES: This study deals with the question whether a slow (non-disturbing) reduction of core body temperature (CBT) during sleep increases sleep stage N3 and EEG slow wave energy (SWE) and leads to a slowing of heart rate in humans. PARTICIPANTS: Thirty-two healthy male subjects with a mean ± SD age 46 ± 4 years and body mass index 25.2 ± 1.8 kg/m2. METHODS: A high-heat capacity mattress (HM) was used to lower body temperatures in sleep and was compared to a conventional low-heat capacity mattress (LM) in a double-blinded fashion. Polysomnography was performed accompanied by measurements of skin-, core body- and mattress surface-temperatures, and heart rate. EEG power spectral analyses were carried out using Fast Fourier Transform. Interbeat intervals were derived from the electrocardiogram. RESULTS: The HM led to a larger decline in CBT, mediated through higher heat conduction from the core via the proximal back skin onto the mattress together with reduced heart rate. These effects occurred together with a significant increase in sleep stage N3 and standardized slow wave energy (sSWE, 0.791-4.297 Hz) accumulated in NREM sleep. In the 2nd half of the night sSWE increase was significantly correlated with body temperature changes, for example with CBT decline in the same phase. CONCLUSIONS: A HM subtly decreases CBT, leading to an increased amount of sleep stage N3 and of sSWE, as well as a slowing of heart rate.


Assuntos
Temperatura Corporal , Temperatura Alta , Adulto , Eletroencefalografia , Humanos , Masculino , Pessoa de Meia-Idade , Sono , Fases do Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...